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1 Historical Facts

There is a common saying that physics is applied mathematics, chemistry
is applied physics, and biology is applied chemistry. In the context of this
course, we find ourselves in a position where the close relationship between
mathematics and physics becomes particularly apparent. Many of the ideas
developed in advanced calculus emphasize how deeply physical reasoning is
intertwined with mathematical structure.

This observation should not be interpreted as a claim that mathematics
is superior to physics, or vice versa. Rather, it highlights the mutual depen-
dence between the two disciplines. Mathematics provides a precise language
and framework, while physics offers concrete motivation and interpretation.
Neither can meaningfully advance without the other.

This perspective became especially clear when I first began studying ad-
vanced calculus. A large portion of its core concepts—particularly those
belonging to vector calculus—originate from physical problems. The devel-
opment of notions such as flux, circulation, and divergence was driven by the
need to describe physical phenomena like fluid flow, electromagnetic fields,
and conservation laws. Many of the theorems encountered in this subject are
not abstract constructions, but formal expressions of physical principles.

During the eighteenth and nineteenth centuries, mathematicians such as
Euler, Lagrange, Gauss, and Green developed the foundations of multivari-
able calculus while studying mechanics, gravitation, and electromagnetism.
Their work revealed that integration over curves, surfaces, and volumes is
not merely a technical extension of single-variable calculus, but a necessary
language for expressing fundamental laws of nature.
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2 Higher-Dimensional Calculus

In elementary calculus, much of our intuition is built on functions defined
along a single direction. We integrate with respect to x or y, and the dif-
ferential element dx represents a small displacement along a straight line.
Geometrically, this corresponds to working on objects that are essentially
one-dimensional. Even when we study areas under curves, the underlying
motion of integration remains linear: we move point by point along an axis,
accumulating contributions in a fixed direction.

However, many mathematical and physical phenomena are not confined
to such simple settings. Quantities such as mass density, electric charge,
temperature, or fluid flow are distributed over regions of space rather than
along a line. To describe and analyze these situations, calculus must be
extended beyond the number line and even beyond the plane. This transition
marks the beginning of what is commonly referred to as advanced calculus.

A first step in this extension is the introduction of double and triple in-
tegrals. Instead of integrating along a single direction, we integrate over
regions in the plane or volumes in space. The differential elements dx dy
and dx dy dz no longer represent motion along a line, but rather infinitesi-
mal pieces of area and volume. As a result, integration acquires a genuinely
geometric character: double integrals naturally measure area-weighted quan-
tities, while triple integrals capture volumetric accumulation. The increase in
dimension fundamentally changes both the interpretation and the techniques
of integration.
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